PII: S0040-4020(97)00816-8

Stereoselective Synthesis of the 6,7,6- and 6,7,7-Ring Systems of Polycyclic Ethers by 6-endo Cyclization and Ring Expansion

Yuji Mori,* Keisuke Yaegashi, and Hiroshi Furukawa

Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya 468, Japan

Abstract: A new strategy for the stereoselective synthesis of the *trans*-fused seven-membered cyclic ethers corresponding to subunits of brevetoxin B and hemibrevetoxin B has been developed. The strategy involves alkylation of an oxiranyl anion and 6-endo cyclization followed by one-carbon homologation of a tetrahydropyran to an oxepane using trimethylsilyldiazomethane.

© 1997 Elsevier Science Ltd.

INTRODUCTION

Polycyclic ethers such as brevetoxins,¹ ciguatoxins,² yessotoxin,³ and maitotoxin⁴ comprise a characteristic and interesting class of marine toxins produced by dinoflagellates. These toxins possess medium-sized cyclic ethers, and it is speculated that these conformationally flexible parts play an important role in interacting with the cation channels of cellular membranes.⁵ The synthesis of oxepane rings, which are frequently encountered cyclic units and are *trans*-fused to other cyclic ethers ranging from 6 to 9 members, is currently receiving a great deal of attention since they are the key step in any possible total synthesis of such molecules.⁶

We previously reported a new reiterative method for the synthesis of trans-fused tetrahydropyrans using the alkylation of an oxiranyl anion and 6-endo cyclization $(I \rightarrow II)$. In order to extend this method to the synthesis of trans-fused oxepanes, we sought an efficient approach in which the single-carbon homologation of II would be used to construct the ring system III. We were attracted by this ring expansion because, in principle, it could be used in an iterative sense after any stage of the 6-endo cyclization in our polytetrahydropyran synthesis. According to this strategy, we have accomplished the formal total synthesis of

12918 Y. Mori et al.

hemibrevetoxin B.8 In this paper, we describe the synthetic details of the *trans*-fused 6,7,6- and 6,7,7- tricyclic ring systems often found in marine polycyclic ethers.

RESULTS AND DISCUSSION

Initial synthetic studies were directed toward the construction of a 6,7-bicyclic ring system III from the *trans*-fused 6,6-bicyclic ketone II. The synthesis of the key building block 6a was started from the Peterson olefination between (S)-O-pentylideneglyceraldehyde⁹ and phenyl trimethylsilylmethyl sulfone 10 to give Z-vinyl sulfone 1 along with the E-isomer (1:1 ratio). Epoxidation of 1 with *tert*-butyl hydroperoxide and potassium *tert*-butoxide proceeded with only 4:1 selectivity. In order to enhance this selectivity, the diphenylmethylene ketal 2 was utilized in the reaction. One of the phenyl group was expected to increase the steric bulk of the α -side of the molecule. The epoxidation led to a higher ratio (12:1) of 3 to its isomer. Deprotection and recrystallization gave the optically pure diol 4 in 75% yield, which was treated with sodium periodate followed by sodium borohydride to give alcohol 5. Protection of the resulting alcohol as a silyl ether afforded epoxy sulfone 6a, a precursor of oxiranyl lithium 6b.

Regioselective activation and protection of the two hydroxyl groups of 7, prepared from tri-O-acetyl-D-glucal, 13 by a one-pot procedure gave triflate 8 in 93% yield. Treatment of a mixture of **6a** and **8** with *n*-butyllithium in THF in the presence of N,N'-dimethylpropyleneurea (DMPU) at -100°C provided the coupled product **9** in 90% yield. Stereospecific 6-endo cyclization of **9** using *p*-toluenesulfonic acid in chloroform at 55°C led to the bicyclic ketone **10** in 80% yield.

One of the simplest routes to transform II to III is ring expansion and the most effective technique is obviously the direct insertion of the methylene unit from diazomethane. This reaction, however, has severe limitations such as low reactivity, multiple homologation, and oxirane formation.¹⁴ We envisaged that such problems could be circumvented using trimethylsilyldiazomethane.¹⁵ The Lewis acid-promoted ring expan-

Table I. 8-keto isomer (%) entry Lewis acid conditions 13 (%) -78°C 7 1 Et₂AlCl 2h 40 2 Me_3Al -78°C 1.5h 48 32 3 BF3 • OEt2 -20°C 56 11 1h 4 BF3 • OEt2 -78°C 1h 76 5

sion of 10 has been effected with trimethylsilyldiazomethane, where the single-carbon homologated 6,7bicyclic ketone 13 was obtained in good yield along with the isomeric C-8 ketone after acid hydrolysis of the trimethylsilyl enol ethers (Table I). The presence of the trimethylsilyl group initially governs the predominant formation of the sterically less crowded α-trimethylsilyl ketone 11 and its rapid rearrangement to the silyl enol ether 12 in this ring expansion prevents the undesirable multiple homologation of the initially formed ketone.

The stereoselective reduction of ketone 13 proved to be more problematic. Reduction with sodium borohydride and diisobutylaluminum hydride furnished a mixture of cis and trans diastereoisomers from which the desired trans-alcohol 14a was isolated as the minor product after chromatographic separation (Table II). The stereochemistry of the reduction products 14a and 14b were confirmed by the difference NOE studies of the corresponding diacetates 17a and 17b obtained by desilylation and acetylation, respectively (Fig. 1).

Table II.

	compd	hydride	conditions		product (14 or 16)	
entry					yield (%)	trans: cis
1	13	NaBH ₄	MeOH/CH ₂ Cl ₂	-78°C	99	31 : 69
2	13	i-Bu ₂ AlH	$\mathrm{CH_2Cl_2}$	-78°C	88	7:93
3	15	$Me_4NBH(OAc)_3$	AcOH/MeCN	-20°C	100	100: 0

Fig. 1. The difference NOE data of the diacetates 17a and 17b.

In order to reverse the selectivity, the silyl protecting group of 13 was removed with tetra-*n*-butylammonium fluoride in the presence of acetic acid and the resulting hydroxy ketone 15 was subjected to the hydroxy-directed reduction with tetramethylammoniun triacetoxyborohydride, ¹⁶ quantitatively providing the desired *trans*-alcohol 16a as a single isomer.

The synthesis of the 6,7,6- and 6,7,7-ring systems present in brevetoxin B and related polycyclic ether toxins has been performed in a straightforward manner. Thus, the diol 16a was converted to the triethylsilyl-protected triflate 18 and coupled with the oxiranyllithium 6b (X=Li) generated from epoxy sulfone 6a (X=H) by an *in situ* trapping method as described for $8\rightarrow 9$, quantitatively furnishing the substituted epoxy sulfone 19. Treatment of 19 with p-toluenesulfonic acid only resulted in the detriethylsilylation and the expected 6-endo cyclization to 20 did not occur. This seems to be due to the pseudoaxial orientation of the hydroxyl group of 19 (R=H) as depicted in Fig. 1. To overcome this difficulty, we examined the cyclization reaction under various acidic conditions. The best results were obtained by the exposure of the desilylated product to boron trifluoride etherate, giving the 6,7,6-tricyclic ketone 20 in 59% yield. Reduction of 20 with sodium borohydride in methanol/CH₂Cl₂ at -78°C gave alcohol 21 with a 99:1 selectivity due to the axial attack of the hydride. Desilylation of 21 with tetra-n-butylammonium fluoride yielded the desired trans -diol 22.

Finally, reaction of 20 with trimethylsilyldiazomethane in the presence of boron trifluoride etherate followed by acid hydrolysis of the intermediary silyl enol ether gave a 63% yield of the *trans*-fused 6,7,7-tricyclic ketone 23 (63%) along with an isomeric ketone (5%). The stereochemistry of the ketones 20 and 23 was confirmed by the NOE experiments (Fig. 2). Desilylation of 23 followed by the hydroxy-directed reduction proceeded uneventfully to give the 6,7,7-tricyclic *trans* -diol 24 as the sole product. Comparison of the chemical shifts of Ha (δ 3.72) and Hb (δ 4.93) of the acetate 25 with those of 17a and 17b (Fig. 1) unambiguously showed the *trans* -relationship of Ha and Hb. Since the tricyclic diols 22 and 24 are latent version of the diols 7 and 16a, respectively, the original steps can be repeated.

Fig. 2. The difference NOE data of the tricyclic ketone 20 and 23.

In summary, a general and iterative route to the *trans*-fused tetrahydropyran-oxepane ring systems has been developed based on the 6-endo cyclization and ring expansion. The single-carbon homologation using trimethylsilyldiazomethane practically allows a one-step access to an oxepane from a tetrahydropyran ring system, thus enabling a very short and useful approach to the construction of polycyclic ethers containing 6-and 7-membered rings.

EXPERIMENTAL SECTION

General. ¹H and ¹³C NMR spectra were measured on JEOL GX-270, Alpha 400, and Alpha 600 spectrometers as CDCl₃ solutions. ¹H NMR and ¹³C NMR chemical shifts are given as δ values with reference to Me₄Si and CDCl₃, respectively. Proton signals were assigned on the basis of H-H COSY experiments. IR spectra were recorded on a JASCO FT/IR-230 spectrometer. Mass spectra, including high resolution mass measurements, were determined in a FAB mode with a JEOL HX-110 instrument. Optical rotations were determined on a JASCO DIP-370 digital polarimeter. Flash chromatography was carried out with E. Merck silica gel 60 (230-400 mesh). The term "dried" refers to the drying of an organic solution over MgSO₄ followed by filtration.

12922 Y. Mori et al.

(Z)-2-[(4R)-2,2-Diethyl-1,3-dioxolan-4-yl]vinyl phenyl sulfone (1). To a solution of phenyl trimethylsilylmethyl sulfone (4.71 g, 20.62 mmol) in dry DME (50 mL) at -78°C was added n-butyllithium (12.9 mL of 1.6 M solution in hexane, 20.62 mmol) under argon. After stirring at -78°C for 20 min, a solution of (S)-O-pentylideneglyceralddehyde (3.26 g, 20.62 mmol) in dry DME (3 mL) was added. The reaction mixture was stirred for 15 min and allowed to warm to room temperature. The reaction was quenched with saturated aqueous NH4Cl and extracted with ethyl acetate. The extract was washed with water and brine, dried, and concentrated. The residue was subjected to flash chromatography (25%→45% diethyl ether in hexane) to give Z-vinyl sulfone 1 (3.00 g, 49%) and the E-isomer (3.10 g, 51%). Z-Vinyl sulfone 1: [α]_D²⁵ -220.3° (c 0.93, CHCl₃); IR (CHCl₃) 1417, 1317, 1151, 1078, 916 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 0.92 (6H, m, CH₂CH₃), 1.67 (4H, m, CH₂CH₃), 3.69 and 4.42 (each 1H, t, J=7.1 Hz, OCH₂), 5.64 (1H, q, J=7.1 Hz, OCH), 6.30 (1H, d, J=11.4 Hz, CH=CHSO₂Ph), 6.38 (1H, dd, J=11.4, 7.1Hz, $CH=CHSO_2Ph$), 7.54-7.69 (3H, Ar), 7.89-7.92 (2H, Ar). ¹³C NMR (67.5 MHz, CDCl₃) δ 7.91, 8.13, 29.23, 29.47, 69.94, 71.72, 114.44, 127.39, 129.42, 130.92, 133.78, 140, 48, 145.16. FABMS m/z: 297 (MH⁺). (E)-Isomer: $[\alpha]p^{25}$ -6.17° (c 0.45, CHCl₃); IR (CHCl₃) 1446, 1319, 1218, 1147, 1079, 758 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 0.70 (6H, m, CH₂CH₃), 1.47 (4H, m, CH₂CH₃), 3.64 (1H, t, *J*=8.1 Hz, OCH₂), 4.22 (1H, dd, J=8.1, 6.7 Hz, OCH₂), 4.70 (1H, dddd, J=8.1, 6.7, 4.7, 1.7 Hz, OCH), 6.66 (1H, dd, J=15.1, 1.7 Hz, CH=CHSO₂Ph), 6.38 (1H, dd, J=15.1, 4.7 Hz, CH=CHSO₂Ph), 7.52-7.67 (3H, Ar), 7.87-7.91 (2H, Ar). FABMS m/z: 297 (MH⁺).

(Z)-2-[(4R)-2,2-Diphenyl-1,3-dioxolan-4-yl]vinyl phenyl sulfone (2). A solution of z-vinyl sulfone 1 (3.54 g, 11.96 mmol) and p-toluenesulfonic acid monohydrate (227 mg, 1.196 mmol) in methanol (50 mL) and water (2.0 mL) was stirred at 40°C for 3 h. After addition of triethylamine (0.5 mL), the reaction mixture was concentrated and the residue was subjected to flash chromatography (25%→45% ethyl acetate in hexane) to give diol (2.31 g, 85%) To a solution of the diol (3.29 g, 10.04 mmol) in CHCl₃ (45 mL) were added benzophenone dimethyl ketal (2.75 g, 12.05 mmol) and p-toluenesulfonic acid monohydrate (191 mg, 1.00 mmol), and the reaction mixture was refluxed for 1.5 h. After cooling to room temperature, triethylamine (0.5 mL) was added and the mixture was concentrated. The residue was subjected to flash chromatography (15%→45% ethyl acetate in hexane) to give 2 (3.68 g, 94%) as a colorless oil: [α]_D²⁵ -185.5° (c 0.53, CHCl₃); IR (CHCl₃) 1448, 1317, 1151, 1082, 704 cm⁻¹; ¹H NMR (270 MHz, CDCl₃): δ 3.93 (1H, dd, J=8.4, 6.1 Hz, OCH₂), 4.46 (1H, dd, J=8.4, 7.7 Hz, OCH₂), 5.75 (1H, dddd, J=7.7, 6.7, 6.1, 1.0 Hz, OCH), 6.28 (1H, dd, J=11.4, 1.0 Hz, CH=CHSO₂Ph), 6.45 (1H, dd, J=11.4, 6.7 Hz, CH=CHSO₂Ph), 7.27-7.89 (15H, Ar); ¹³C NMR (67.5 MHz, CDCl₃) δ 70.45, 72.39, 111.30, 126.07, 126.11, 127.42, 128.17, 128.28, 129.43, 130.91, 133.82, 140.42, 141.63, 141.88, 145.04. FABMS m/z: 393 (MH⁺).

(2R,3S)-3-[(4S)-2,2-Diphenyl-1,3-dioxolan-4-yl]-2-(phenylsulfonyl)oxirane (3). To a stirred mixture of potassium *tert*-butoxide (1.36 g, 12.14 mmol) and *tert*-butyl hydroperoxide (1.75 mL of 80% solution in di-*tert*-butyl ether, 14.01 mmol) in dry THF (30 mL) at -78°C under argon was added a solution of 2 (3.66 g, 9.34 mmol) in dry THF (10 mL). After stirring at -78°C for 1 h, the reaction mixture was stored in a freezer (-25°C) for 19 h and then treated with saturated aqueous NH₄Cl (20 mL). The mixture was extracted with ethyl acetate, and the extract was washed with aqueous Na₂S₂O₃, water, and brine, dried

and concentrated. The residue was subjected to flash chromatography (20% ethyl acetate in hexane) to give a mixture of 3 and the isomeric epoxide (2.77 g, 73% total yield) in a ratio of 12:1 judging from the 1H NMR spectrum. [α]_D²⁵ +6.60° (c 0.20, CHCl₃); 1H NMR (600 MHz, CDCl₃) δ 3.39 (1H, dd, J=7.3, 3.7 Hz, epoxy H), 4.03 (1H, d, J=3.7 Hz, epoxy H), 4.20 (1H, dd, J=8.8, 6.6 Hz, OCH₂), 4.29 (1H, dd, J=8.8, 3.7 Hz, OCH₂), 5.06 (1H, m, OCH), 7.26-8.01 (15H, Ar); 13 C NMR (150 MHz, CDCl₃) δ 60.77, 67.79, 68.34, 71.71, 110.84, 125.91, 126.11, 128.13, 128.25, 128.28, 128.59, 129.49, 134.62, 138.03, 141.61, 141.91. FABMS m/z: 409 (MH⁺).

(2*R*,3*S*)-3-[(1*S*)-1,2-Dihydroxyethyl]-2-(phenylsulfonyl)oxirane (4). A solution of 3 (2.77 g, 6.79 mmol) and *p*-toluenesulfonic acid monohydrate (129 mg, 0.68 mmol) in methanol (35 ml) was stirred at 40°C for 2 h. The reaction mixture was treated with triethylamine (0.5 mL) and concentrated. The residue was recrystallized from methanol-ethyl acetate to give diol 4 (1.54 g, 75%) as colorless prisms: mp 144-146°C; $[\alpha]_D^{25}$ +78.3° (*c* 0.41, methanol); ¹H NMR (600 MHz, CDCl₃) δ 3.42 (1H, dd, *J*=8.4, 3.7 Hz, epoxy H), 3.70 (1H, ddd, *J*=11.4, 6.2, 5.1 Hz, CH₂OH), 3.78 (1H, ddd, *J*=11.4, 5.5, 3.3 Hz, CH₂OH), 3.91 (1H, dd, *J*=5.5, 5.1 Hz, OH), 4.27 (1H, d, *J*=6.2 Hz, OH), 4.36 91H, d, *J*=3.7 Hz, epoxy H), 4.40 (1H, dddd, *J*=8.4, 6.2, 6.2, 3.3 Hz, CHOH), 7.70-8.02 (5H, Ar). FABMS *m/z*: 245 (MH⁺). Anal. Calcd for C₁₀H₁₂O₅S: C, 49.17; H, 4.95. Found: C, 49.02; H, 4.74.

(2R,3S)-3-Hydroxymethyl-2-(phenylsulfonyl)oxirane (5). To a stirred solution of diol 4 (1.14 g, 4.67 mmol) in methanol (12 mL) and water (12 mL) was added sodium periodate (1.30 g, 6.07 mmol). The reaction mixture was stirred at room temperature for 15 min and extracted with ethyl acetate. The extract was washed with water and brine, dried, and concentrated. The residue was subjected to flash chromatography (60% ethyl acetate in hexane) to give an aldehyde (988 mg, 100%) as a colorless oil: $[\alpha]_D^{25}$ +176° (c 0.61, CHCl₃); IR (CHCl₃) 1729, 1448, 1331, 1219, 1159, 1083 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 3.66 (1H, d, J=4.7, 4.0 Hz, OCHCHO), 4.35 (1H, d, J=4.0 Hz, OCHSO₂Ph), 7.63-8.00 (5H, Ar), 9.85 (1H, d, J=4.7 Hz, CHO); ¹³C NMR (67.5 MHz, CDCl₃) δ 59.38, 70.64, 128.84, 129.78, 135.15, 136.50, 193.87. FABMS m/z: 213 (MH⁺).

To a stirred solution of the aldehyde (974 mg, 4.59 mmol) in methanol (15 mL) at -20°C was added sodium borohydride (226 mg, 5.97 mmol). The reaction mixture was stirred at -20°C for 30 min and extracted with ethyl acetate. The extract was washed with water and brine, dried, and concentrated. The residue was subjected to flash chromatography (80% ethyl acetate in hexane) to give alcohol 5 (831 mg, 84%) as a colorless oil: $[\alpha]_D^{25}$ +112.9° (c 0.5, CHCl₃); IR (CHCl₃) 3602, 1448, 1329, 1157, 1038, 611 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.29 (1H, dd, J=6.7, 6.4 Hz, OH), 3.58 (1H, ddd, J=6.4, 4.0, 4.0 Hz, OCH), 4.10 (1H, d, J=4.0 Hz, CHSO₂Ph), 4.23 (1H, ddd, J=13.1, 6.7, 4.0 Hz, CH₂OH), 4.38 (1H, ddd, J=13.1, 6.4, 6.4 Hz, CH₂OH), 7.60-7.99 (5H, Ar); ¹³C NMR (67.5 MHz, CDCl₃) δ 59.44, 60.56, 68.54, 128.40, 129.58, 134.64, 138.01. FABMS m/z: 215 (MH⁺).

(2R,3S)-3-[(tert-Butyldiphenylsiloxy)methyl]-2-(phenylsulfonyl)oxirane (6a). The alcohol (485 mg, 9.07 mmol) was dissolved in dry DMF (4.0 mL) and the solution was cooled to 0°C. To this solution were added imidazole (616 mg, 9.07 mmol) and tert-butyldiphenylchlorosilane (1.47 mL, 5.67).

mmol) and the mixture was stirred at room temperature for 2 h. The reaction mixture was extracted with diethyl ether and the extract was washed with water and brine, dried, and concentrated. The residue was subjected to flash chromatography (18% ethyl acetate in hexane) to give epoxy sulfone **6a** (867 mg, 85%) as a colorless oil: $[\alpha]_D^{25}$ +55.9° (c 1.0, CHCl₃); IR (CHCl₃) 1427, 1330, 1159, 1113, 604 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 1.09 (9H, s, t-BuSi), 3.55 (1H, ddd, J=6.1, 4.0, 3.4 Hz, OCH), 4.00 (1H, d, J=4.0 Hz, OCHSO₂), 4.32 (1H, dd, J=12.4, 3.4 Hz, CH₂OSi), 4.38 (1H, dd, J=12.4, 6.1 Hz, CH₂OSi), 7.73-7.90 (15H, Ar). ¹³C NMR (67.5 MHz, CDCl₃) δ 19.23, 26.80 (3 x C), 60.96, 61.64, 68.16, 127.77, 127.80, 128.46, 129.41, 129.84, 132.98, 133.14, 134.39, 135.56, 135.60, 138.13. HRMS (FAB) m/z: calcd for C₂₅H₂₈O₄SSi (MH⁺) 453.1554, found 453.1579.

(2*R*,3*S*)-3-(*tert*-Butyldimethylsiloxy)-2-[(trifluoromethanesulfonyloxy)methyl]-3,4,5,6-tetrahydro-2*H*-pyran (8). To a stirred solution of diol 7 (2.20 g, 16.67 mmol) in dry CH₂Cl₂ (33 mL) at -78°C under argon were added 2,6-lutidine (5.79 mL, 50.01 mmol) and trifluoromethanesulfonic anhydride (2.89 mL, 17.7 mmol). After stirring at -78°C for 30 min, *tert*-butyldimethylsilyl trifluoromethanesulfonate (4.21 mL, 18.34 mmol) was added and the reaction mixture was allowed to warm to 0°C over 1 h. The reaction was quenched with saturated aqueous NaHCO₃ and extracted with ethyl acetate. The extract was washed with water and brine, dried, and concentrated. The residue was subjected to flash chromatography (4% ethyl acetate in hexane) to give triflate 8 (5.89 g, 93%) as a pale yellow oil: [α]_D²⁵ +47.6° (*c* 1.0, CHCl₃); IR (CHCl₃) 1415, 1247, 1143, 1105, 950, 840 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.07 (3H, s, CH₃Si), 0.08 (3H, s, CH₃Si), 0.88 (9H, s, *t*-BuSi), 1.46 (1H, m, Hax-4), 1.67 (2H, m, H-5), 2.09 (1H, m, Heq-4), 3.34 (1H, m, H-2), 3.38 (1H, m, Hax-6), 3.49 (1H, ddd, *J*=10.3, 9.3, 4.9 Hz, H-3), 3.95 (1H, m, Heq-6), 4.55 (1H, dd, *J*=10.3, 5.4 Hz, CH₂OTf), 4.72 (1H, dd, *J*=10.3, 1.5 Hz, CH₂OTf); ¹³C NMR (100 MHz, CDCl₃) δ -5.11, -3.90, 17.79, 24.98, 25.61 (3 x C), 33.20, 66.78, 67.81, 76.05, 79.82, 117.04. One carbon signal assigned to CF₃ was not detected due to the large C-F coupling. FABMS *m/z*: 379 (MH⁺).

(2*R*,3*S*)-3-(tert-Butyldimethylsiloxy)-2-[(2*R*,3*S*)-4-(tert-butyldiphenylsiloxy)-2,3-epoxy-2-(phenylsulfonyl)butyl]-3,4,5,6-tetrahydro-2*H*-pyran (9). A solution of triflate 8 (147 mg, 0.389 mmol), epoxy sulfone 6a (299 mg, 0.661 mmol), and DMPU (94 μL, 0.778 mmol) in dry THF (7.0 mL) under argon was cooled to -100°C and treated with *n*-butyllithium (413 μL of 1.6 M solution in hexane, 0.661 mmol). After stirring at -100°C for 30 min, the reaction was quenched with saturated aqueous NH₄Cl. The reaction mixture was warmed to 0°C and extracted with ethyl acetate. The extract was washed with water and brine, dried, and concentrated. The residue was subjected to flash chromatography (16% ethyl acetate in hexane) to give epoxy sulfone 9 (238 mg, 90%) as a colorless oil: $[\alpha]_D^{25}$ +46.9° (*c* 0.60, CHCl₃); IR (CHCl₃) 1471, 1427, 1323, 1113, 839, 704 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ -0.21 (3H, s, CH₃Si), -0.06 (3H, s, CH₃Si), 0.69 (9H, s, *t*-BuSi), 1.09 (9H, s, *t*-BuSi), 1.33 (1H, m, Hax-4), 1.60 (2H, m, H-5), 1.94 (1H, m, Heq-4), 2.08 (1H, dd, *J*=15.1, 8.3 Hz, H-1'), 2.13 (1H, dd, *J*=15.1, 2.4 Hz, H-1'), 2.73 (1H, ddd, *J*=8.9. 8.9, 2.9 Hz, H-2), 3.11 (1H, m, H-3), 3.14 (1H, m, Hax-6), 3.71 (1H, dd, *J*=5.9, 2.4 Hz, H-3'), 3.76 (1H, br d, *J*=10.7 Hz, Heq-6), 4.40 (1H, dd, *J*=13.2, 2.4 Hz, H-4'), 4.50 (1H, dd, *J*=13.2, 5.9 Hz, H-4'), 7.38-7.86 (15H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ -4.91, -4.05, 17.68,

19.26, 25.30, 25.65 (3 x C), 26.80 (3 x C), 31.73, 33.36, 61.50, 66.49, 67.00, 70.22, 75.14, 127.71, 128.96, 129.19, 129.70, 133.29, 133.49, 133.98, 135.56. HRMS (FAB) m/z: calcd for $C_{37}H_{53}O_6SSi_2$ (MH+) 681.3098, found 681.3061.

(2R,4aS,8aS)-2-[(tert-Butyldiphenylsiloxy)methyl]perhydropyrano[3,2-b]pyran-3-one

(10). A solution of epoxy sulfone 9 (216 mg, 0.318 mmol) and p-toluenesulfonic acid monohydrate (74.8 mg, 0.412 mmol) in CHCl₃ (3.2 mL) was heated at 55°C for 3 h. The reaction mixture was cooled to 25°C and extracted with ethyl acetate. The extract was washed with saturated aqueous NaHCO₃ and brine, dried, and concentrated. The residue was subjected to flash chromatography (10 \rightarrow 20% ethyl acetate in hexane) to give the bicyclic ketone 10 (108 mg, 80%) as a colorless oil: $[\alpha]_D^{25}$ +17.8° (c 0.77, CHCl₃); IR (CHCl₃) 1724, 1427, 1113, 1092, 704 cm⁻¹; ¹H NMR (600 MHz, acetone-d₆) δ 1.01 (9H, s, t-BuSi), 1.53 (1H, m, Hax-8), 1.74 (2H, m, H-7), 2.14 (1H, m, Heq-8), 2.47 (1H, dd, J=16.1, 11.7 Hz, Hax-4), 2.74 (1H, dd, J=16.1, 5.9 Hz, Heq-4), 3.33 (1H, ddd, J=11.7, 8.8, 5.9 Hz, H-4a), 3.38 (1H, ddd, J=11.7, 11.7, 4.4 Hz, Hax-6), 3.42 (1H, ddd, J=11.0, 8.8, 4.4 Hz, H-8a), 3.86 (1H, m, Heq-6), 3.95 (1H, dd, J=11.0, 5.1 Hz, CH₂OSi), 4.00 (1H, dd, J=11.0, 2.9 Hz, CH₂OSi), 4.13 (1H, dd, J=5.1, 2.9 Hz, H-2), 7.40-7.46 (6H, Ar), 7.72-7.76 (4H, Ar). NOE experiments: δ 4.13 (irr) \rightarrow δ 2.47 (1.2%) and 3.42 (5.6%). ¹³C NMR (100 MHz, CDCl₃) δ 19.25, 25.09, 26.70 (3 x C), 29.18, 45.26, 63.34, 67.47, 75.83, 76.21, 83.96, 127.56 (4 x C), 129.60 (2 x C), 133.37, 133.50, 135.68 (4 x C), 205.66. HRMS (FAB) m/z: calcd for C₂₅H₃₃O₄Si (MH+) 425.2146, found 425.2119.

(4aS,6R,9aR)-6-[(tert-Butyldiphenylsiloxy)methyl]perhydropyrano[3,2-b]oxepan-7-one

(13). To a solution of ketone 10 (289 mg, 0.682 mmol) in CH₂Cl₂ (7 mL) were added boron trifluoride diethyl etherate (100 µL, 0.818 mmol) and trimethylsilyldiazomethane (360 µL of 2.0 M solution in hexane, 0.716 mmol) at -78°C under argon. After stirring at -78°C for 1 h, the reaction was quenched with saturated aqueous NaHCO3 and extracted with ethyl acetate. The extract was washed with water and brine, dried, and concentrated. The residue was dissolved in methanol (7.0 mL) and pyridinium p-toluenesulfonate (257 mg, 1.022 mmol) was added. After stirring at 25°C for 1h, the mixture was extracted with ethyl acetate. The extract was washed with saturated aqueous NaHCO₃, water, and brine, dried, and concentrated. The residue was subjected to flash chromatography (25% ethyl acetate in hexane) to give the bicyclic ketone 13 (227 mg, 76%) and the 8-keto isomer (15.1 mg, 5%). 13: colorless oil; $[\alpha]_D^{25} + 96.4^\circ$ (c 0.43, CHCl₃); IR (CHCl₃) 1714, 1427, 1325, 1221, 1092, 823 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.02 (9H, s, t-BuSi), 1.53 (1H, m, H-9), 1.64 (1H, m, Hax-4), 1.72 (3H, m, H-3, H-9), 2.14 (2H, m, Heq-4, H-9), 2.44 (1H, ddd, J=11.2, 7.3, 1.5 Hz, H-9a), 3.01 (2H, m, H-4a, H-8), 3.31 (1H, ddd, J=10.7, 8.8, 4.4 Hz, H-8), 3.40 (1H, ddd, J=11.2, 11.2, 3.4 Hz, Hax-2), 3.92 (4H, m, Heq-2, H-6, CH₂OSi), 7.35-7.45 (6H, Ar), 7.64-7.74 (4H, Ar); ¹³C NMR (100 MHz, CDCl₃) & 19.25, 25.71, 26.67 (3 x C), 29.73, 31.18, 38.50, 66.12, 67.59, 81.46, 81.72, 87.65, 127.58 (2 x C), 127.65 (2 x C), 129.65, 129.69, 133.11, 133.18, 135.63 (2 x C), 135.76 (2 x C), 215.46. HRMS (FAB) m/z; calcd for $C_{26}H_{35}O_4Si$ (MH+) 439.2302, found 439.2339. 8-Keto isomer of 13: colorless oil; $[\alpha]_D^{25}$ -41.3° (c 0.70, CHCl₃); IR (CHCl₃): 1707, 1427, 1221, 1113, 823 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.05 (9H, s, t-BuSi), 1.44 (1H, m, Hax-4), 1.69 (2H, m, H-3), 2.07 (1H, m, Heq-4), 2.45 (1H, dd, J=18.1, 11.2 Hz, H-7), 2.71 (1H, dd, J=18.1, 2.9 Hz, H-7), 2.73

(1H, dd, J=11.7, 2.0 Hz, H-9), 3.01 (1H, dd, J=11.7, 11.7 Hz, H-9), 3.08 (1H, ddd, J=11.7, 7.8, 2.0 Hz, H-9a), 3.30 (2H, m, Hax-2, H-4a), 3.51 (1H, dd, J=10.2, 5.9 Hz, CH₂OSi), 3.70 (1H, dd, J=10.2, 6.3 Hz, CH₂OSi), 3.89 (1H, bd d, J=11.7 Hz, Heq-2), 4.01 (1H, m, H-6), 7.36-7.46 (6H, Ar), 7.66-7.69 (4H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 19.18, 25.45, 26.77 (3 x C), 30.63, 47.65, 50.69, 66.39, 67.95, 77.72, 77.91, 83.34, 128.00 (4 x C), 129.75, 129.79, 133.18, 133.31, 135.58 (2 x C), 135.61 (2 x C), 207.65; FABMS m/z: 439 (MH⁺).

(4aS,6R,9aR)-6-(Hydroxymethyl)perhydropyrano[3,2-b]oxepan-7-one (15). A solution of 13 (227 mg, 0.518 mmol) and acetic acid (59 μL, 1.037 mmol) in dry THF (5 mL) at 0°C was treated with tetra-*n*-butylammonium fluoride (0.78 mL of 1.0 M solution in THF, 0.78 mmol). After stirring at 25°C for 4 h, the mixture was concentrated and subjected to flash chromatography (80% ethyl acetate in hexane) to give hydroxy ketone 15 (128 mg, 99%) as a colorless oil: $[\alpha]_D^{25}$ +188.8° (c 0.53, CHCl₃); IR (CHCl₃) 3595, 1714, 1452, 1327, 1232, 1213 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.52-1.74 (4H, m, Hax-4, H-9, H-3), 2.09-2.18 (3H, m, Heq-4, H-9, OH), 2.46 (1H, ddd, J=13.7, 6.8, 1.5 Hz, H-8), 2.85 (1H, ddd, J=13.7, 13.7, 2.4 Hz, H-8), 3.10 (1H, ddd, J=10.7, 9.3, 4.9 Hz, H-4a), 3.27 (1H, ddd, J=10.7, 8.8, 3.9 Hz, H-9a), 3.37 (1H, ddd, J=11.2, 11.2, 2.9 Hz, Hax-2), 3.74 (1H, dd, J=11.7, 5.9 Hz, CH₂OH), 3.83 (1H, dd, J=11.7, 3.9 Hz, CH₂OH), 3.90 (1H, m, Heq-2), 3.96 (1H, dd, J=5.9, 3.9 Hz, H-6); ¹³C NMR (100 MHz, CDCl₃) δ 25.63, 29.30, 31.04, 38.22, 63.77, 67.59, 81.48, 82.58, 87.14, 214.62. HRMS (FAB) m/z: calcd for C₁₀H₁₇O₄ (MH⁺) 201.1126, found 201.1142.

(4aS,6R,7S,9aR)-7-Hydroxy-6-(hydroxymethyl)perhydropyrano[3,2-b]oxepane (16a). A solution of hydroxy ketone 15 (98.3 mg, 0.492 mmol) in dry acetonitrile (1.0 mL) was added to a cold (-20°C) and stirred solution of tetramethylammonium triacetoxyborohydride (647 mg, 2.46 mmol) in dry acetonitrile (2.5 mL) and dry acetic acid (2.5 mL) under argon. After stirring at -20°C for 1 h, saturated aqueous NH₄Cl (0.6 mL) was added and the mixture was warmed to room temperature. Saturated aqueous potassium sodium tartrate (0.6 mL) was added to the mixture and stirring continued for 20 min. After addition of MgSO₄ (200 mg), the mixture was diluted with ethyl acetate and passed through a short pad of silica gel. The filtrate was concentrated and subjected to flash chromatography (15% acetone in ethyl acetate) to give diol 16a (99.2 mg, 100%) as a colorless oil: $[\alpha]_D^{25} +21.2^\circ$ (c 0.24, CHCl₃); IR (CHCl₃) 3597, 3446, 1439, 1356 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.45 (1H, m, Hax-4), 1.68 (2H, m, H-3), 1.74 (1H, br d, J=4.4 Hz, OH), 1.87 (4H, m, H-8, H-9), 2.09 (2H, m, Heq-4, OH), 2.99 (1H, m, H-9a), 3.18 (1H, ddd, J=11.0, 9.2, 4.4 Hz, H-4a), 3.32 (1H, m, Hax-2), 3.48 (1H, ddd, J=7.3, 7.3, 4.0 Hz, H-6), 3.58 (1H, ddd, J=11.4, 7.3, 4.0 Hz, CH₂OH), 3.74 (1H, ddd, J=11.4, 7.7, 4.0 Hz, CH₂OH), 3.82 (1H, m, H-7), 3.89 (1H, m, Heq-2); ¹³C NMR (100 MHz, CDCl₃) δ 25.78, 27.28, 30.55, 31.32, 64.81, 67.79, 71.34, 83.04, 83.11, 86.03. HRMS (FAB) m/z: calcd for C₁₀H₁₉O₄ (MH⁺) 203.1282, found 203.1259.

(4aS,6R,7S,9aR)-7-Triethylsiloxy-6-[(trifluoromethanesulfonyloxy)methyl]perhydropyrano[3,2-b]oxepane (18). To a stirred solution of diol 16a (50.2 mg, 0.249 mmol) in CH₂Cl₂ (2.5 mL) at -78°C under argon were added 2,6-lutidine (144 μ L, 1.243 mmol) and trifluoromethanesulfonic anhydride (44 μ L, 0.261 mmol). After 30 min of stirring, triethylsilyl trifluoromathanesulfonate (83 μ L,

0.373 mmol) was added and the reaction mixture was stirred at -78°C for 30 min. The reaction was quenched with saturated aqueous NaHCO₃ and extracted with ethyl acetate. The extract was washed with water and brine, dried, and concentrated. The residue was subjected to flash chromatography (4% ethyl acetate in hexane) to give triflate **18** (82.3 mg, 74%) as a pale yellow oil: $[\alpha]_D^{25}$ +25.2° (c 0.72, CHCl₃); IR (CHCl₃) 1414, 1243, 1225, 1205, 1146, 1086 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.60 (6H, q, J=7.8 Hz, Et₃Si), 0.95 (9H, t, J=7.8 Hz, Et₃Si), 1.45 (1H, m, Hax-4), 1.67 (2H, m, H-3), 1.76-1.95 (4H, m, H-8, H-9), 2.11 (1H, m, Heq-4), 2.97 (1H, ddd, J=11.2, 11.2, 3.9 Hz, H-9a), 3.16 (1H, ddd, J=11.2, 9.3, 4.4 Hz, H-4a), 3.32 (1H, m, Hax-2), 3.68 (1H, ddd, J=7.3, 7.3, 2.9 Hz, H-6), 3.77 (1H, ddd, J=7.3, 3.4, 3.4 Hz, H-7), 3.87 (1H, br d, J=12.2, Heq-2), 4.42 (1H, dd, J=10.2, 7.3 Hz, CH₂OTf), 4.51 (1H, dd, J=10.2, 2.9 Hz, CH₂OTf); ¹³C NMR (100 MHz, CDCl₃) δ 4.88 (3 x C), 6.72 (3 x C), 25.73, 26.88, 30.19, 30.88, 67.84, 70.45, 77.00, 82.81, 83.34, 83.83; FABMS m/z: 449 (MH⁺).

(4aS,6R,7S,9aR-6-[(2R,3S)-4-(tert-Butyldiphenylsiloxy)-2,3-epoxy-2-(phenylsulfonyl)-1butyl]-7-(triethylsiloxy)perhydropyrano[3,2-b]oxepane (19). A solution of triflate 18 (77 mg. 0.172 mmol), epoxy sulfone 6a (132 mg, 0.293 mmol), and DMPU (52 μL, 0.431 mmol) in dry THF (3.0 mL) under argon was cooled to -100°C and treated with n-butyllithium (183 µL of 1.6 M solution in hexane, 0.293 mmol). After stirring at -100°C for 30 min, the reaction was quenched with saturated aqueous NH₄Cl. The reaction mixture was warmed to 0°C and extracted with ethyl acetate. The extract was washed with water and brine, dried, and concentrated. The residue was subjected to flash chromatography (15% ethyl acetate in hexane) to give the coupling product 19 (129 mg, 100%) as a colorless oil: $[\alpha]_D^{25} + 52.2^{\circ}$ (c 1.0, CHCl₃); IR (CHCl₃) 1427, 1325, 1165, 1113, 1082 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.83 (6H, q, J=7.8 Hz, Et₃Si), 0.80 (9H, t, J=7.8 Hz, Et₃Si), 1.08 (9H, s, t-BuSi), 1.39 (1H, m, Hax-4), 1.58 (2H, m, H-3), 1.67-1.81 (4H, m, H-8, H-9), 1.86 (1H, dd, J=15.1, 1.5 Hz, H-1'), 2.13 (1H, m, Heq-4), 2.31 (1H, dd. J=15.1, 10.4 Hz, H-1'), 2.90 (1H, ddd, J=9.8, 9.8, 3.9 Hz, H-9a), 3.05 (1H, ddd, J=11.2, 9.8, 4.4 Hz, H-4a), 3.11 (1H, ddd, J=10.4, 6.3, 1.5 Hz, H-6), 3.27 (1H, m, Hax-2), 3.47 (1H, m, H-7), 3.78 (1H, dd, J=4.4, 3.4 Hz, H-3'), 3.85 (1H, br d, J=10.7 Hz, Heq-2), 4.39 (1H, dd, J=13.3, 3.4 Hz, H-4'), 4.42 (1H, dd, J=13.3, 4.4 Hz, H-4'), 7.37-7.85 (15 H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 4.83 (3 x C), 6.38 (3 x C), 19.21, 25.76, 26.73 (3 x C), 26.83 29.79, 31.19, 33.78, 61.58, 66.44, 67.74, 75.06, 75.19, 81.28, 81.81, 82.68, 127.76, 129.05, 129.14, 129.77, 133.04, 133.21, 134.03, 135.51, 135.58, 137.19. HRMS (FAB) m/z: calcd for C₄₁H₅₉O₇SSi₂ (MH⁺) 751.3517, found 751.3550.

(2R,4aR,5aS,9aR,11aS)-2-[(tert-Butyldiphenylsiloxy)methyl]perhydrodipyrano-

[3,2-b: 2, 3-f]oxepan-3-one (20). To a solution of epoxy sulfone 19 (21.9 mg, 0.029 mmol) in CHCl₃ (0.2 mL) was added p-toluenesulfonic acid monohydrate (8.3 mg, 0.044 mmol) at 0°C. After stirring at 0°C for 2 h, saturated aqueous NaHCO₃ (0.2 mL) was added and the mixture was extracted with ethyl acetate. The extract was washed with water and brine, dried, and concentrated. The residue was subjected to flash chromatography (50% ethyl acetate in hexane) to give the detriethylsilylated product (18.1 mg, 97%).

A solution of the product (11.2 mg, 0.018 mmol) in dry CHCl₃ (0.2 mL) was treated with boron trifluoride diethyl etherate (8.3 μ L, 0.044 mmol) at 0°C and the reaction mixture was stirred at 25°C for 1 h. The reaction was quenched with saturated aqueous NaHCO₃ and extracted with ethyl acetate. The extract was

washed with water and brine, dried, and concentrated. Purification by flash chromatography (16% ethyl acetate in hexane) gave the tricyclic ketone **20** (5.3 mg, 61%) as a colorless oil: $[\alpha]_D^{25}$ +28.6° (c 0.81, CHCl₃); IR (CHCl₃) 1724, 1427, 1113, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.02 (9H, s, t-Bu), 1.43 (1H, m, Hax-6), 1.68 (2H, m, H-7), 1.88-2.17 (5H, m, Heq-6, H-10, H-11), 2.43 (1H, dd, J=16.5, 9.8 Hz, Hax-4), 2.94 (1H, dd, J=16.5, 6.3 Hz, Heq-4), 3.08 (1H, ddd, J=9.3, 7.3, 3.9 Hz, H-9a), 3.21 (1H, ddd, J=11.2, 9.3, 4.4 Hz, H-5a), 3.31 (1H, m, Hax-8), 3.47 (1H, ddd, J=9.8, 5.9, 5.9 Hz, H-11a), 3.78 (1H, ddd, J=9.8, 9.8, 6.3 Hz, H-4a), 3.88 (2H, m, H-2, Heq-8), 3.95 (1H, dd, J=11.2, 3.9 Hz, CH₂OSi), 3.98 (1H, dd, J=11.2, 2.9 Hz. CH₂OSi), 7.35-7.44 (6H, Ar), 7.66-7.73 (4H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 19.25, 25.88, 26.72 (3 x C), 28.74, 29.46, 31.18, 46.61, 63.59, 67.92, 78.09, 80.24, 81.43, 82.56, 83.89, 127.58 (4 x C), 129.62 (2 x C), 133.29, 133.39, 135.68 (4 x C), 206.74. HRMS (FAB) m/z: calcd for C₂₉H₃₉O₅Si (MH⁺) 495.2564, found 495.2538.

(2R,3S,4aR,5aS,9aR,11aS)-2-[(tert-Butyldiphenylsiloxy)methyl]-3-hydroxyperhydrodipyrano-[3,2-b: 2, 3-f]oxepane (21). To a solution of 20 (5.3 mg, 0.011 mmol) in methanol (0.25 mL) and CH₂Cl₂ (0.25 mL) at -78°C was added sodium borohydride (2.0 mg, 0.053 mmol). After stirring at -78°C for 30 min, the reaction mixture was treated with saturated aqueous NH₄Cl (two drops) and extracted with ethyl acetate. The extract was washed with water and brine, dried and concentrated. The residue was subjected to flash chromatography (40% ethyl acetate in hexane) to give alcohol 21 (5.3 mg, 99%) as a colorless oil: $[\alpha]_D^{25}$ -6.74° (c 0.44, CHCl₃); IR (CHCl₃) 3500, 1464, 1427, 1113, 1080 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 1.06 (9H, s, t-BuSi), 1.43 (1H, m, Hax-6), 1.54 (1H, q, J=11.7 Hz, Hax-4), 1.66 (2H, m, H-7), 1.81 (2H, m, H-10, H-11), 1.93 (2H, m, H-10, H-11), 2.08 (1H, m, Heq-6), 2.40 (1H, ddd, J=11.7, 4.4, 4.4 Hz, Heq-4), 3.07 (1H, ddd, J=9.5, 5.4, 5.4 Hz, H-9a), 3.14 (1H, ddd, J=9.5, 5.9, 5.9 Hz, H-11a), 3.20 (1H, ddd, J=11.0, 9.5, 4.4 Hz, H-5a), 3.26 (1H, ddd, J=11.7, 9.5, 4.4 Hz, H-4a), 3.28 92H, m, Hax-8, H-2), 3.38 (1H, br s, OH), 3.74 (1H, dd, J=10.3, 7.3 Hz, CHCH₂OSi), 3.76 (1H, m, H-3), 3.86 91H, br d, J=11.7 Hz, Heq-8), 3.90 (1H, dd, J=10.3, 4.4 Hz, CHCH₂OSi), 7.26-7.68 (10H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 19.11, 25.97, 26.79 (3 x C), 29.03, 29.82, 31.41, 39.55, 66.69, 67.93, 70.10, 78.64, 79.14, 80.83, 81.54, 82.56, 127.83 (4 x C), 129.96 (2 x C), 132.47 (2 x C), 135.55, 135.61. FABMS m/z: 497 (MH+).

(2*R*,3*S*,4a*R*,5a*S*,9a*R*,11a*S*)-3-Hydroxy-2-(hydroxymethyl)perhydrodipyrano-[3,2-*b*: 2, 3-*f*]oxepane (22). A solution of 21 (5.3 mg, 0.011 mmol) in THF (0.8 mL) was treated with tetra-*n*-butylammonium fluoride (22 μL of 1.0 M solution in THF, 0.022 mmol) and the mixture was stirred at room temperature for 30 min. After evaporation of the solvent, the residue was purified by flash chromatography (ethyl acetate) to give diol 22 (2.3 mg, 85%) as a colorless needles: mp 149°C; $[\alpha]_D^{25}$ +12.8° (*c* 0.19, CHCl₃); IR (CHCl₃) 3596, 3446, 1456, 1084 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 1.44 (1H, m, Hax-6), 1.53 (1H, q, *J*=11.7 Hz, Hax-4), 1.67 (2H, m, H-7), 1.88 (2H, m, H-10, H-11), 2.00 (2H, m, H-10, H-11), 2.05 (1H, m, Heq-6), 2.06-2.10 (2H, br, OH x 2), 2.40 (1H, ddd, *J*=11.7, 4.4, 4.4 Hz, Heq-4), 3.08 (1H, ddd, *J*=9.5, 5.9, 5.9 Hz, H-9a), 3.17 (1H, ddd, *J*=8.8, 4.4, 4.4 Hz, H-2), 3.21 (2H, m, H-5a, H-11a), 3.28 (2H, m, H-4a, Hax-8), 3.65 (1H, m, H-3), 3.75 (1H, dd, *J*=11.0, 4.4 Hz, CHCH₂OSi), 3.85 (1H, br d, *J*=12.4 Hz, Heq-8); ¹³C NMR (100 MHz, CDCl₃) δ 25.94, 29.11, 29.85, 31.38, 40.39, 63.21,

67.12. 67 91, 78.63, 80.85, 81.13, 81.72, 82.48. FABMS m/z: 259 (MH⁺). Anal. Calcd for C₁₃H₂₂O₅: C, 60.4°, H, 8.59. Found: C, 60.76; H, 8.83.

(4aS,5aR,9R,10aS,12aR)-9-[(tert-Butyldiphenylsiloxy)methyl]perhydropyrano[3,2-b]oxepano[2,3-f]oxepan-8-one (23). To a solution of 20 (40 mg, 0.081 mmol) in dry CH₂Cl₂ (1.0 mL) at -78°C under argon were added boron trifluoride diethyl etherate (12 μL, 0.097 mmol) and trimethylsilyldiazomethane (45 µL of 2.0 M solution in hexane, 0.090 mmol). After stirring at -78°C for 1.5 h, the reaction was quenched with saturated aqueous NaHCO3 and extracted with ethyl acetate. The extract was washed with water and brine, dried, and concentrated. The residue was dissolved in methanol (1.0 mL) and pyridinium p-toluenesulfonate (30.5 mg, 0.121 mmol) was added. After stirring at 25°C for 2 h, the reaction mixture was extracted with ethyl acetate. The extract was washed with saturated aqueous NaHCO3 and brine, dried, and concentrated to give an oil. Purification by flash chromatography (30% ethyl acetate in hexane) gave the tricyclic ketone 23 (25.8 mg, 63%) and the isomeric ketone (2 mg, 5%). 23: colorless oil. [\alpha]D²⁵ +87.9° (c 0.15, CHCl₃); IR (CHCl₃) 1714, 1464, 1429, 1115, 1086, 704 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.02 (9H, s, t-BuSi), 1.46 (1H, m, Hax-4), 1.63 (1H, m, H-6), 1.70 (2H, m, H-3), 1.91-2.09 (5H, m, H-12, H-11, Heq-4), 2.21 (1H, m, H-6), 2.45 (1H, ddd, J=11.7, 6.6, 1.5 Hz, H-7), 2.96 (1H, ddd, J=13.9, 11.7, 2.9 Hz, H-7), 3.01 (1H, ddd, J=9.5, 7.3, 4.4 Hz, H-12a), 3.20 (1H, ddd, J=9.5, 4.4, 4.4 Hz, H-10a), 3.28 (1H, ddd, J=11.0, 9.5, 3.7 Hz, H-4a), 3.34 (1H, m, Hax-2), 3.65 (1H, ddd, J=11.0, 9.5, 3.7 Hz, H-5a), 3.85 (2H, m, H-9, CH₂OSi), 3.90 (2H, m, Heq-2, CH₂OSi), 7.36-7.44 (6H, Ar), 7.64-7.74 (4H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 19.23, 26.07, 26.67 (3 x C), 28.44, 30.90, 31.49, 31.72, 39.44, 66.01, 68.05, 83.12, 83.63, 84.27, 85.66, 87.60, 127.61 (2 x C), 127.66 (2 x C), 129.69, 129.72, 132.99, 133.04, 135.58 (2 x C), 135.74 (2 x C), 216.07. HRMS (FAB) m/z: calcd for C₃₀H₄₁O₅Si (MH⁺) 509.2721, found 509.2749.

The C-7 keto-isomer: colorless oil, $[\alpha]_D^{25}$ -32.8° (c 0.17, CHCl₃); IR (CHCl₃) 1703, 1427, 1211, 1113, 1086, 791, 766, 750 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 1.05 (9H, s, t-BuSi), 1.43 (1H, m, Hax-4), 1.67 (2H, m, H-3), 1.83-2.01 (4H, m, H-11, H-12), 2.04 91H, m, Heq-4), 2.58 (1H, dd, J=16.1, 11.0 Hz, H-8), 2.65 (1H, dd, J=16.1, 2.9 Hz, H-8), 2.85 (1H, dd, J=13.9, 4.4 Hz, H-6), 2.89 (1H, dd, J=13.9, 11.0 Hz, H-6), 2.98 (1H, ddd, J=9.5, 8.8, 4.4 Hz, H-12a), 3.17 (1H, ddd, J=11.0, 9.5, 4.4 Hz, H4a), 3.30 (1H, m, Hax-2), 3.49 (1H, ddd, J=8.8, 5.1, 5.1 Hz, H-10a), 3.54 (1H, dd, J=10.3, 5.1 Hz, CH₂OSi), 3.66 (1H, ddd, J=11.0, 8.8, 4.4 Hz, H-5a), 3.68 (1H, dd, J=10.3, 5.9, CH₂OSi), 3.86 (2H, m, Heq-2, H-9); ¹³C NMR (150 MHz, CDCl₃) δ 19.23, 25.95, 26.77 (3 x C), 28.80, 30.39, 31.44, 48.30, 51.42, 66.73, 67.91, 78.58, 80.55, 82.95, 83.33, 86.37, 127.70 (4 x C), 129.74, 129.77, 133.24, 133.34, 135.58, 135.63, 208.13. FABMS m/z: 509 (MH+).

(4aS,5aR,8S,9R,10aS,12aR)-8-Hydroxy-9-(hydroxymethyl)perhydropyrano[3,2-b]-oxepano[2,3-f]oxepane (24). To a solution of 23 (25.5 mg, 0.050 mmol) in dry THF (0.5 mL) at 0°C were added acetic acid (5.7 μ L, 0.10 mmol) and tetra-n-butylammonium fluoride (75 μ L of 1.0 M solution in THF, 0.075 mmol). After stirring at 25°C for 2 h, the mixture was concentrated and subjected to flash chromatography (70% ethyl acetate in hexane) to give a hydroxy ketone (12.8 mg, 94%) as a colorless prisms, mp 135°C;: $[\alpha]_D^{25}$ +160.6° (c 1.0, CHCl₃); IR (CHCl₃) 3597, 3465, 1714, 1454, 1115, 1086, 773

12930 Y. Mori et al.

cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 1.45 (1H, m, Hax-4), 1.65 (1H, br q, J=13.2 Hz, Hax-6), 1.69 (2H, m, H-3), 1.93 (2H, m, H-12), 2.06 (3H, m, Heq-4, H-11), 2.10 (1H, br, OH), 2.20 (1H, m, Heq-6), 2.44 (1H, ddd, J=13.2, 6.6, 1.5 Hz, H-7), 2.79 (1H, ddd, J=13.2, 13.2, 2.9 Hz, H-7), 3.01 (1H, ddd, J=9.5, 6.6, 5.9 Hz, H-12a), 3.25 (1H, ddd, J=9.5, 8.8, 3.7 Hz, H-4a), 3.27 (1H, ddd, J=9.5, 5.1, 5.1 Hz, H-10a), 3.32 (1H, m, Hax-2), 3.60 (1H, ddd, J=11.0, 9.5, 4.4 Hz, H-5a), 3.72 (1H, dd, J=11.7, 5.9 Hz, CH₂OH), 3.80 (1H, dd, J=11.7, 3.7 Hz, CH₂OH), 3.89 (1H, br d, J=13.2, Heq-2), 3.91 (1H, dd, J=5.9, 3.7 Hz, H-9); ¹³C NMR (150 MHz, CDCl₃) δ 26.02, 28.63, 30.92, 31.26, 31.44, 38.86, 63.75, 68.01, 82.64, 83.20, 83.97, 86.54, 87.47, 215.08. FABMS m/z: 271 (MH⁺). Anal. Calcd for C₁₄H₂₂O₅: C, 62.19, H, 8.21. Found: C, 62.41; H, 8.53.

A solution of the hydroxy ketone (12.8 mg, 0.308 mmol) in dry acetonitrile (0.3 mL) was added to a cold (20 °C) and stirred solution of tetramethylammonium triacetoxyborohydride (81 mg, 0.308 mmol) in dry acetonitrile (0.25 mL) and dry acetic acid (0.25 mL) under argon. After stirring at $^{-20}$ °C for 2 h, saturated aqueous NH₄Cl (0.06 mL) was added and the mixture was warmed to room temperature. Saturated aqueous potassium sodium tartrate (0.06 mL) was added to the mixture and stirring continued for 20 min. After addition of MgSO₄ (100 mg), the mixture was diluted with ethyl acetate and passed through a short pad of silica gel. The filtrate was concentrated and subjected to flash chromatography (50 ° methanol in ethyl acetate) to give diol **24** (12.0 mg, 93%) as a colorless oil: [60]D²⁵ +32.3° (60 0.6, CHCl₃); IR (CHCl₃) 3600, 3446, 1454, 1086, 783 cm⁻¹; 11 H NMR (400 MHz, CDCl₃) 50 1.42 (1H, m, Hax-4), 1.67 (2H, m, H-3), 1.79-1.95 (8H, m, H-6, H-7, H-11, H-12, OH), 2.05 (1H, m, Heq-4), 2.08 (1H, m, H-7), 2.18 (1H, br, OH), 3.00 (1H, ddd, 50) 3.44, 4.4 Hz, H-12a), 3.13 (1H, ddd, 50) 4.4 Hz, H-4a), 3.29 (1H, m, Hax-2), 3.41 (1H, ddd, 50) 4.73, 7.3, 4.4 Hz, H-9), 3.46 (1H, m, H-5a or 10a), 3.49 (1H, m, H-8), 3.57 (1H, dd, 50) 4.11, 4.11, 4.12, CDCl₃) 50 0 25.93, 28.46, 29.33, 29.92, 30.30, 31.32, 64.66, 67.80, 71.77, 81.69, 82.15, 82.99, 84.90, 86.30. HRMS (FAB) 50 1 calcd for C₁₄H₂₅O₅ (MH⁺) 273.1700, found 273.1728.

(4aS,5aR,8S,9R,10aS,12aR)-8-Acetyloxy-9-[(acetyloxy)methyl]perhydropyrano[3,2-b]-oxepano[2,3-f]oxepane (25). A solution of 24 (8.0 mg, 0.029 mmol) in pyridine (0.2 mL) and acetic anhydride (0.2 mL) was stirred at room temperature for 13 h. The reaction mixture was concentrated in vacuo and the residue was purified by flash chromatography (35% ethyl acetate in hexane) to give 25 (9.7 mg, 92%) as a colorless oil: $[\alpha]_D^{25}$ +29.7° (c 0.5, CHCl₃); IR (CHCl₃) 1736, 1371, 1246, 1076, 773 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 1.42 (1H, m, Hax-4), 1.67 (2H, m, H-3), 1.78 (2H, m, H-7, H-11), 1.84-1.96 (4H, m, H-6, H-7, H-11, H-12), 2.00 (1H, m, H-6), 2.05 (3H, s, COCH₃), 2.07 (3H, s, COCH₃), 2.99 (1H, ddd, J=8.8, 8.8, 5.1 Hz, H-12a), 3.16 (1H, ddd, J=11.0, 8.8, 4.4 Hz, H-4a), 3.29 (1H, m, Hax-2), 3.41 (1H, ddd, J=8.8, 8.8, 4.4 Hz, H-10a), 3.46 (1H, ddd, J=8.8, 5.9, 5.9 Hz, H-5a), 3.72 (1H, ddd, J=6.6, 4.4, 4.4 Hz, H-9), 3.87 (1H, br d, J=11.7 Hz, Heq-2), 4.01 (1H, dd, J=11.7, 4.4 Hz, CH₂OAc), 4.11 (1H, dd, J=11.7, 6.6 Hz, CH₂OAc), 4.93 (1H, br t, J=5.1 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 20.86, 21.18, 24.97, 25.99, 28.37, 28.94, 30.54, 31.43, 64.98, 67.89, 73.32, 80.81, 81.98, 82.87, 83.31, 84.17, 170.09, 170.81. FABMS m/z: 357 (MH⁺).

ACKNOWLEDGMENT

This work was supported by the Grant-in-Aid for Scientific Research on Priority Area No. 08245101 from the Ministry of Education, Science, Sports and Culture, of Japanese Government. The authors also thank the Hoansha Foundation.

REFERENCES

- (a) Lin, Y. Y.; Risk, M.; Ray, S. M.; Van Engen, D.; Clardy, J.; Golik, J.; James, J. C.; Nakanishi, K. J. Am. Chem. Soc. 1981, 103, 6773. (b) Shimizu, Y.; Bando, H.; Chou, N. H.; Van Duyne, G.; Clardy, J. J. Am. Chem. Soc. 1986, 108, 514. (c) Pawlak, J.; Tempesta, M. S.; Golik, J.; Zagorski, M. G.; Lee, M. S.; Nakanishi, K.; Iwashita, T.; Gross, M. L.; Tomer, K. B. J. Am. Chem. Soc. 1987, 109, 1144. (d) Prasad, A. V. K.; Shimizu, Y. J. Am. Chem. Soc. 1989, 111, 6476. (e) Morohashi, A.; Satake, M.; Murata, K.; Naoki, H.; Kaspar, H. F.; Yasumoto, T. Tetrahedron Lett. 1995, 36, 8995.
- (a) Murata, M.; Legrand, A.-M.; Ishibashi, Y.; Fukui, M.; Yasumoto, T. J. Am. Chem. Soc.
 1990,112, 4380. (b) Murata, M.; Legrand, A.-M.; Scheuer, P. J.; Yasumoto, T. Tetrahedron Lett.
 1992, 33, 525. (c) Satake, M.; Murata, M.; Yasumoto, T. Tetrahedron Lett.
- 3. (a) Murata, M.; Kumagai, M.; Lee, J. S.; Yasumoto, T. Tetrahedron Lett. 1987, 28, 5869. (b) Satake, M.; Terasawa, K.; Kadowaki, Y.; Yasumoto, T. Tetrahedron Lett. 1996, 37, 5955. (c) Takahashi, H.; Kusumi, T.; Kan, Y.; Satake, M.; Yasumoto, T. Tetrahedron Lett.. 1996, 37, 7087.
- (a) Murata, M.; Naoki, H.; Iwashita, T.; Matsunaga, S.; Sasaki, M.; Yokoyama, A.; Yasumoto, T. J. Am. Chem. Soc. 1993, 115, 2060. (b) Sasaki, M.; Matsumori, N.; Maruyama, T.; Nonomura, T.; Murata, M.; Tachibana, K.; Yasumoto, T. Angew. Chem. Int. Ed. Engl. 1996, 35, 1672. (c) Nonomura, T.; Sasaki, M.; Matsumori, N.; Murata, M.; Tachibana, K.; Yasumoto, T. Angew. Chem. Int. Ed. Engl. 1996, 35, 1675. (d) Zheng, W.; De Mattei, J. A.; Wu, J.-P.; Duan, J. J.-W.; Cook, L. R.; Oinuma, H.; Kishi, Y. J. Am. Chem. Soc. 1996, 118, 7946.
- 5. Yasumoto, T.; Murata, M. Chem. Rev. 1993, 93, 1897 and references cited therein.
- 6. For a total synthesis of brevetoxin B, see: (a) Nicolaou, K. C. Angew. Chem. Int. Ed. Engl. 1996, 35, 589 and references cited therein.

For total syntheses of hemibrevetoxin B, see: (b) Nicolaou, K. C.; Reddy, K. R.; Skokotas, G.; Sato, F.; Xiao, X.-Y. J. Am. Chem. Soc. 1992, 114, 7935. (c) Nicolaou, K. C.; Reddy, K. R.; Skokotas, G.; Sato, F.; Xiao, X.-Y.; Hwang, C.-K. J. Am. Chem. Soc. 1993, 115, 3558. (d) Kadota, I.; Jung-Youl, P.; Koumura, N.; Pollaud, G.; Matsukawa, Y.; Yamamoto, Y. Tetrahedron Lett. 1995, 36, 5777. (e) Morimoto, M.; Matsukura, H.; Nakata, T. Tetrahedron Lett. 1996, 37, 6 365.

For other synthetic studies on the fused oxepane ring systems, see: (f) Yamamoto, Y.; Yamada, J.; Kadota, I. *Tetrahrdron Lett.* **1991**, *32*, 7069. (g) Kadota, I.; Matsukawa, Y.; Yamamoto, Y. *J. Chem. Soc. Chem. Commun.* **1993**, 1638. (h) Palazón, J. M.; Martín, V. S. *Tetrahedron Lett.* **1995**, *36*, 3549. (i) Oguri, H.; Hishiyama, S.; Oishi, T.; Hirama, M. *Synlett*, **1995**, 1252. (j) Nakata, T.; Nomura, S.; Matsukura, H.; Morimoto, M. *Tetrahedron Lett.* **1996**, *37*, 217. (k) Alvarez, E.; Pérez,

- R.; Rico, M.; Rodríguez, R. M.; Martín, J. D. J. Org. Chem. 1996, 61, 3003. (l) Ravelo, J. L.; Regueiro, A.; Rodríguez, R. M.; de Vera, J.; Martín, J. D. Tetrahedron Lett. 1996, 37, 2869. (m) Hosokawa, S.; Isobe, M. Synlett, 1995, 1179. (n) Hosokawa, S.; Isobe, M. Synlett, 1996, 351. (o) Feng, F.; Murai, A. Synlett, 1992, 1587. (p) Fei, F.; Murai, A. Synlett, 1995, 863. (q) Ishihara, J.; Murai, A. Synlett, 1996, 363. (r) Evans, P. A.; Roseman, J. D.; Garber, L. T. J. Org. Chem. 1996, 61, 4880. (s) Clark, J. S.; Kettle, J. G. Tetrahedron Lett. 1997, 38, 123 and pertinent references cited therein.
- (a) Mori, Y.; Yaegashi, K.; Iwase, K.; Yamamori, Y.; Furukawa, H. Tetrahedron Lett. 1996, 37, 2605.
 (b) Mori, Y.; Yaegashi, K.; Iwase, K.; Yamamori, Y.; Furukawa, H. Tetrahedron Lett. 1996, 37, 6959.
 (c) Mori, Y.; Yaegashi, K.; Furukawa, H. J. Am. Chem. Soc. 1996, 118, 8158.
- 8. Mori, Y.; Yaegashi, K.; Furukawa, H. J. Am. Chem. Soc. 1997, 119, 4557.
- 9. Schmid, C. R.; Bradley, D. A. Synthesis 1992, 587.
- 10. Craig, D.; Ley, S. V.; Simpkins, N. S.; Whitham, G. H.; Prior, M. J. J. Chem. Soc., Perkin Trans. 1 1985, 1949.
- (a) Ashwell, M.; Clegg, W.; Jackson, R. F. W. J. Chem. Soc., Perkin Trans. 1 1991, 897. (b)
 Briggs, A. D.; Jackson, R. F. W.; Clegg, W.; Elsegood, R. J.; Kelly, J.; Brown, P. A. Tetrahedron Lett. 1994, 35, 6945.
- 12. (a) Kozikowski, A. P.; Ghosh, A. K. J. Org. Chem. 1984, 49, 2762. (b) Brückner, R.; Priepke, H. Angew. Chem. Int. Ed. Engl. 1988, 27, 278.
- 13. Nicolaou, K. C.; Hwang, C.-K.; Marron, B. E.; DeFrees, S. A.; Couladouros, E. A.; Abe, Y.; Carroll, P. J.; Snyder, J. P. J. Am. Chem. Soc. 1990, 112, 3040.
- 14. (a) Gutsche, C. D. Org. React. 1954, 8, 364. (b) Cowell, G. W.; Ledwith, A. Q. Rev. Chem. Soc. 1970, 24, 119.
- (a) Hashimoto, N.; Aoyama, T.; Shioiri, T. *Tetrahedron Lett.* 1980, 21, 4619. (b) Hashimoto, N.;
 Aoyama, T.; Shioiri, T. *Chem. Pharm. Bull.* 1982, 30, 119. (c) Maruoka, K.; Concepcion, A. B.;
 Yamamoto, H. *J. Org. Chem.* 1994, 59, 4725. (d) Maruoka, K.; Concepcion, A. B.;
 Yamamoto, H. *Synthesis*, 1994, 1283.
- 16. Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560.

(Received in Japan 28 May 1997; accepted 15 July 1997)